Pion Form Factor With Twisted Mass QCD

A.M. Abdel-Rehim and Randy Lewis

Physics Department, University of Regina, Canada

Lattice 2004 - Fermilab

Contents

• Motivation for Twisted Mass LQCD.

• Details of our Lattice Calculations.

• The Pion Form Factor.

• Conclusions.

Motivation for Twisted Mass LQCD:

• Lattice QCD with Wilson fermions:

$$S_F^{LW} = a^4 \sum_{x} \bar{\psi}_p(x) \left[\sum_{\mu} \frac{1}{2} \gamma_{\mu} (\nabla_{\mu}^* + \nabla_{\mu}) + m_0 - a \frac{r}{2} \sum_{\mu} \nabla_{\mu}^* \nabla_{\mu} \right] \psi_p(x)$$

- $\mathcal{O}(a)$ errors
- Exceptional configurations in quenched calculations.
- Improvement with clover term and improved operators · · · · exceptional configurations still exist.

Twisted Mass QCD and Exceptional Configurations:

- R. Frezzotti, P. A. Grassi, S. Sint and P. Weisz, JHEP 0108, 058 (2001).
- R. Frezzotti, S. Sint and P. Weisz, JHEP **0107**, 048 (2001).
- In the continuum, the twisted mass action for a degenerate quark doublet is given by:

$$S_F[\psi,\bar{\psi}] = \int d^4x \bar{\psi} (D_{\mu}\gamma_{\mu} + m_q + i\mu_q\gamma_5\tau^3)\psi$$

An axial transformation,

$$\psi' = e^{i\omega\gamma_5\tau^3/2}\psi, \quad \bar{\psi}' = \bar{\psi}e^{i\omega\gamma_5\tau^3/2}$$

leaves the form of the action invariant and rotates the masses as:

$$\begin{pmatrix} m'_q \\ \mu'_q \end{pmatrix} = \begin{bmatrix} \cos(\omega) & \sin(\omega) \\ -\sin(\omega) & \cos(\omega) \end{bmatrix} \begin{pmatrix} m_q \\ \mu_q \end{pmatrix}$$

Quark mass:

$$M_q^2 = m_q^2 + \mu_q^2$$

- $tan(\omega) = \frac{\mu_q}{m_q} \rightarrow \mu_q' = 0$ which is QCD.
- Composite field operators:

$$A'^{a}_{\mu} = \begin{cases} \cos(\omega)A^{a}_{\mu} + \epsilon^{3ab}\sin(\omega)V^{b}_{\mu} & (a = 1, 2), \\ A^{3}_{\mu} & (a = 3) \end{cases}$$

- Positive definite determinant of the Dirac operator
 - → No exceptional configurations .

Twisted Mass and O(a) improvement:

- R. Frezzotti and G. C. Rossi, Nucl. Phys. Proc. Suppl. 129, 880 (2004)
- R. Frezzotti and G. C. Rossi, arXiv:hep-lat/0306014.
- Symmetries: $\mathcal{R}_5^{SP}=\mathcal{R}_5 imes(r o -r) imes(m_q o -m_q)$ $\mathcal{R}_5 imes\mathcal{D}_d$ $\mathcal{R}_5:\psi o\gamma_5\psi,\ \ ar{\psi} o -ar{\psi}\gamma_5$

$$\mathcal{D}_d$$
: $U_{\mu}(x) \to U_{\mu}^{\dagger}(-x - a\hat{\mu})$
 $\psi(x) \to e^{3i\pi/2}\psi(-x)$

• Wilson averaging gives $\mathcal{O}(a)$ improved correlators:

$$\frac{1}{2} [\langle O \rangle_r^{\omega} + \langle O \rangle_{-r}^{\omega}] = \zeta_O(\omega, r) \langle O \rangle_{cont.} + \mathcal{O}(a^2)$$

• Wilson averaging is done with tmQCD.

• Simplification at $\omega = \pm \frac{\pi}{2}$

— Matrix elements are either automatically improved or improved by averaging correlator with momenta \vec{k} and $-\vec{k}$.

$$\langle n, \vec{k}|O|n', \vec{k'}\rangle_{r,m_q}^{\frac{\pi}{2}} + \eta_{nn'O}\langle n, -\vec{k}|O|n', -\vec{k'}\rangle_{r,m_q}^{\frac{\pi}{2}}$$

$$= 2\zeta_O(r)\langle n, \vec{k}|O|n', \vec{k'}\rangle_{cont.}^{\frac{\pi}{2}} + \mathcal{O}(a^2)$$

$$\eta_{nn'O} = \pm 1$$

$$E_n(\vec{k}, r, m_q) + E_n(-\vec{k}, r, m_q) = 2E_n^{cont.}(\vec{k}, m_q) + \mathcal{O}(a^2)$$

Details of Our Lattice Calculations:

- Lattice size: $16^3 \times 48$
- 100 gauge field configurations, quenched.
- Matrix inversion by GMRES-DR
 - R. B. Morgan SIAM J. Sci. Comput. 24, 20 (2002).
 - R. B. Morgan and W. Wilcox, Nucl. Phys. Proc. Suppl. 106, 1067 (2002).
- $\beta = 6.0$, $\kappa = \kappa_c$, $\mu_q = 0.015, 0.030$.
 - K. Jansen, A. Shindler, C. Urbach and I. Wetzorke, Phys. Lett. B 586, 432 (2004).

The Pion Form Factor

- The pion form factor is of theoretical and experimental interest.
- No disconnected lattice diagrams.
- \bullet Transition from non-perturbative QCD to perturbative QCD occurs at smaller Q^2 than for baryons.
- Mainly described by Vector Meson Dominance.
- Experimental measurement at high Q^2 is underway at **JLab**.

Various attempts to compute the pion form factor on the lattice:

Wilson (quenched)

* F. Bonnet, R. Edwards, G. Fleming, R. Lewis and D. Richards [LHP Collaboration], Nucl. Phys. Proc. Suppl. 128, 59 (2004), Nucl. Phys. Proc. Suppl. 129, 206 (2004).

Clover (quenched)

- * J. van der Heide, M. Lutterot, J. H. Koch and E. Laermann, Phys. Lett. B **566**, 131 (2003).
- * J. van der Heide, J. H. Koch and E. Laermann, Phys. Rev. D 69, 094511 (2004).

Domain Wall (quenched)

- * Y. Nemoto [RBC Collaboration], Nucl. Phys. Proc. Suppl. 129, 299 (2004).
- Domain Wall (dynamical staggered configurations)
 - * G. Fleming [LHP Collaboration], to be presented in this conference.

• It corresponds to the process (for example):

$$\pi(\vec{p_i}) \to \pi(\vec{p_f}) \gamma^*(\vec{q})$$

• The pion form factor $F(Q^2)$ is defined by:

$$\langle \pi(p_f)|j_{\mu}(0)|\pi(p_i)\rangle_{cont.} = F(Q^2)(p_i + p_f)_{\mu}$$

$$Q = p_f - p_i$$

ullet j_{μ} is a conserved vector current

Pion form factor at μ =0.030, ω = π /2 m_{π} =660 MeV

Pion Form Factor at μ =0.015, ω = π /2 m_{π} =470 MeV

Conclusions:

- *tmQCD* solves the problem of exceptional configurations.
- $\mathcal{O}(a)$ improvement could be obtained with a simple averaging procedure at $\omega=\pm\frac{\pi}{2}$ without the need for improvement terms.
- At $\omega = \pm \frac{\pi}{2}$ the results are improved as compared to Wilson even before averaging.
- GMRES-DR is an efficient matrix inverter for tmQCD calculations.
- ullet The pion form factor was calculated to a high Q^2 value.